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Zum Spannungs- und Stabilititsproblem von Kesselbgden unter Innendruck

1. Einleitung

Im Jahre 1956 kam es in Avon, Kalifornien, bei der hydrostatischen
Priifung eines groBen zylindrischen Behiilters mit einem flachen
Bodenahschluf, bestehend aus einer Kugelkalotte und einem torus-
formigen Ubergangsstiick, zum Beulversagen des Behilters [1].
Dieser Umstand weckte in Fachkreisen das Interesse fiir eine
genauere Analyse derartiger Schalenkonstruktionen. Man besann
sich der hekannten Tatsache, daB unter Innendruck im torusformi-
gen Ubergangsstiick Druckspannungen auftreten, die der Grund fiir
viclwelliges Ausbeulen in Umfangsrichtung, sogenanntes .wrink-
ling*, in diesem Bereich sind. In diesem Zusammenhang sei zum
Beispiel Fliigge [2] angefiihrt, der im Rahmen der Untersuchung
einer zylindrischen Kesseltrommel mit AbschluBbéden von der
Form flacher Drehellipsoide gezeigt hat, dali unter Innendrudk im
Bereich des Uberganges vom Zylinder zum Drehellipsoid eine Zone
mit Ringdruckspannungen entsteht.

In ecinem im Jahre 1959 erschienenem Aufsatz untersuchte Galletly
[3] einen zylindrischen Kessel mit einem torus-kugelférmigen
AbschluBboden. Galletly weist zuniichst darauf hin, dall sich die
Membrantheorie nicht zur Lésung des vorliegenden Problems
cignet. Im weiteren entwickelt er Differentialgleichungen anf der
Grundlage der Bicgetheorie und integriert diese numerisch unter
Verwendung finiter Differenzen.

Shield und Drucker [4] argumentieren plausibel, dafi ein diinnwan-
diger Behilter unter Innendruck umso besser ausgeniitzt ist, je
weitgehender Druckspannungen ausgeschaltet werden knnen. Diese
Autoren sfellen in ihrer Arbeit dem entwerfenden Ingenieur Daten
und Konstruktionsregeln fiir BehiilterabschluBbiden torus-kugelfor-
figer (Bild 1) oder torus-kegelférmiger Gestalt zur Verfiigung.
Shield und Drucker weisen darauf hin, daB die eingangs erwihnte
Instabilititsform jedenfalls fiir sehr diinne Schalen zutrifft.

Adachi und Benieek [5] untersuchten torus-kugelformige Abschluf-
biden experimentell. Bushnell und Galletly [6] fithrten elasto-plasti-
sche Analysen von Behilterabschlubbiden unter Beriicksichtigung
nichtlinearen Vorbeulverhaltens durdi. Dabei stellten sie fest, dal}
die Beriicksichtigung des Einflusses der Rotationen auf die Membran-
verzerrungen vor dem Ausheulen im gegenstiindlichen Tall ver-
steifend wirkt, also cine Erhohung der rechnerischen Beuldriicke
bedingt. Verschiedene AbschluBbéden wurden von Galletly, Kirk
und Gill experimentell untersucht und anschlieiend von Bushnell
unter Beniitzung des auf Finiten Differenzen beruhenden Compu-
terprogrammes BOSOR 5 analysiert.

Bushnell [7] untersuchte sowohl ellipsoidférmige als auch torus-
kugelformige AbschluBbaden auf Stabilitit unter Zuhilfenahme des
zuvor erwihnten Computerprogrammes. Er fand heraus, dalb der
Beuldruck bei weniger diinnwandigen AbschluBbéden sowohl von
physikalischer als auch von geometrischer Nichtlinearitit vor dem
Ausheulen beeinfluBlt wird, Grob gesprochen fithrt im gegenstind-
lichen Fall die Beriicksichtigung geometrischer Nichtlinearitit zn
ciner Erhihung des Beuldruckes, withrend bei Beriicksichtigung
physikalischer Nidhtlincaritat das Gegenteil eintritt.

Die angefiihrten Arbeiten enthalten wertvolle Diagnosen des
Sachverhaltes. Offen bleibt jedoch die Frage, ob die eingangs
erwihnten Druckspannungen bei Auschaltung der Kriimmungs-
spriinge an den heiden Enden des Ubergangsstiickes abnehmen
und dadurch die Beulsicherheit giinstig beeinflussen. Zur Klirung
dieser Frage werden in der vorlicgenden Arbeit Ubergangsstiicke
mit Erzeugenden von der Form sogenannter hyperoskulatorischer
Polynome gewiihlt, die einen stetigen Kriimmungsithergang an den
Anschliissen an die Kalotte oder den Zylinder gewiihrleisten. Dar-
{iber hinaus wird durch Vergriferung der Entwicklungshihe des
Ubergangsstiickes eine Verkleinerung des Kriimmungsmaximums an-
gestrebt. Bild 1 verdeutlicht die geschilderte Zielsetzung der Arbeit.
Die Grundlage fiir die numerische Untersuchung stellt ein an der
Cornell University entwickeltes Computerprogramm namens FESIA
(Finite Element Shell Instability Analysis) [8] dar, an dessen Ver-
vollkommnung und Weiterentwicklung in den letzten Jahren am
Institut fiir Baustatik und Festigkeitslehre der Technischen Univer-
sitiit Wien intensiv gearbeitet worden ist. :

Die vorliegende Arheit umfalit die Formulierung des Deformations-
und des Stabhilititsproblems, die Beschreibung der geometrisclhien
Form des Ubergangsstiickes und die numerische Untersuchung. Der
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formulative Teil der Arbeit ist bewuBt knapp gehalten, da in der
einschliigizen Literatur ein reichhaltiges Angebot an verwandten
Formulierungen auf der Grundlage der Methode der Finiten Ele-
mente (FEM) vorhanden ist. Da es bei dieser Arbeit in erster Linie
um einen Vergleich des Einflusses verschiedener geometrischer An-
ordnungen auf den Beuldruck geht, reicht es hin, der numerischen
Untersuchung lineares Vorbeulverhalten zugrunde zu legen.

e

2. Formulierung des Deformations- und des Stabilitdtsproblems

21 Verschiebungszustand

Der Verschiebungsvektor u'? des dreiecksformigen, gekriimmten

Finiten Elementes e (Bild 2) mit den Komponenten u', o) und

w' 1iBt sich durch Knotenpunktsverschiebungen q'[""' und Ver-
i

laufsfunktionen ¥'°' wie folgt darstellen:

ul?

= L= wlel . qtvl
f,ﬂ

Der Vektor der unbekannten Lagekoordinaten ist zu
;S [ du) 1(3::) 'dv) (Bi)
k. _[r'u’l(i)a.]l(.'dﬁI(UIILU«l(aﬁl{wh da /)
dw (dw
| - = ) | 1l e
(‘d.-f]l (uz...(aﬂ)s{uﬁ{vi{mJ 2

gegehen, wobei g7 fiir die Transponierte von g steht. Mit o und f
werden krummlinige, orthogonale Koordinaten (s. Bild 2) bezeich-
net. Die Verlaufsfunktionen ¥ sind in [9] angegeben.

3

Bild 2. Dreiecksfirmiges, gekriimmtes Finites Element

Bei Anwendung des klassischen Prinzips vom Minimum der poten-
ticllen Energie erfiillen die Verschichungsfunktionen zwar Inter-
clementskontinuitit in den Verschiebungen (sogenannte Cg-Inter-
elementskontinuitiit) nicht aber in den Tangentendrchungen normal
zum  Rand (sogenannte C,-Interelementskontinuitit). Hingegen
kann bei Beniitzung eines sogenannten Prinzips vom stationiiren
Wert einer modifizierten Form der potentiellen Energie in jedem
Punkt des Elementsrandes Cp-Interelementskontinuitit hergestellt
werden [9].
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22 Verzerrungszustand

Es gelangt cine Schalentheorie kleiner Verzerrungen und soge-
nannter .milig grofer” Rotationen zur Anwendung, die auf Koiter
[10] zuriickgeht. Bei dieser Schalentheorie enthalten die Ausdriicke
fiir die Verzerrungen der Schalenmittelfliiche jeweils einen in den
Rotationen quadratischen Term. Die Ausdriicke fiir die Kriitmmungs-
andernngen sind hingegen linear [10].

23 SchnittgréBen

Der Vektor der SchnittgroBen

T=[nrmr]=[nMnﬂﬂnaﬁmmmﬁﬁmm?] ™ v e

setzt sich aus dem Subvektor m der inneren Krifte und dem Sub-
vektor m der inneren Momente zusammen., Unter Beachtung des
Hookeschen Gesetzes erhiilt man den Zusammenhang zwischen dem
Vektor der Schnittgrifien und dem Vektor der Verzerrungen der
Mittelfliche bzw. der Kriitmmungsinderungen [9].

i

24 Modifizierte potentielle Encergie

Die zuvor erwidhnte modifizierte Form der potentiellen Energie
lifB3t sich formal zu

S o AR R g SN S N R
anschreiben. wobei
FlE TRl 2 e e s S e s e )

die klassische potentielle Energie darstellt und I” ein sogenanntes
Ergiinzungsfunktional symbolisiert. U ist die Verzerrungsenergie
und V das Potential der duBleren Krifte. Das Erginzungsfunktional
ergibt sich zu

!=Za(‘;:)nﬂ (6)

i==1
- d
wobei (}—t:) den auf den Mittelpunkt M der Parameterabbil-
Chiy

dung des betreffenden Elementsrandes bezogenen Unterschied in
den partiellen Ableitungen von w normal zu diesem Rand darstellt
[11]; A bezeichnet einen Lagrangeschen Multiplikator, mit dessen
Hilfe im erwihnten Scitenmittelpunkt (s. die Punkte 5, 6, 7
in Bild 2) C,-Interelementskontinuitiit erzwungen wird. Dies he-
deutet im gegenstindlichen Fall, daB lings des gesamten Randes
Neigungskontinuitit gegeben ist.

25 Deformationsproblem
Die Losung erfolgt mit Hilfe der Stationidritatshedingung [9]

$I" =389 (Kpq+ CT2—P)+8iTCqg=0 .. @)
Die Tangentensteifigkeitsmatrix Ky ergibt sich zu [9]

By LN G W) o 2 e (8)
wobei K die klassische Steifigkeitsmatrix ist und N, (q) l.ll]l] N, (q?)
dic erste bzw. zweite geometrische Steifigkeitsmatrix ist. In Glei-
chung (7) bedeutet € die Koeffizientenmatrix in der algebraisierten
Form der Zwangsbedingungen fiir die Elementsrinder; P stellt den

Vektor energetisch Ziquivalenter Knotenkrifte fiir die gegebene
Belastung dar.

26 Stabilititsproblem

Aus der Bedingung fiir indifferentes Gleichgewicht,

= : K, C'"][dq
1 S R e il e 9
c 0 4
ergibt sich das Beulkriterium zu
ol
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|

Bei Beschriinkung auf lincares Vorbeulverhalten folgt die Tangen-
tensteifigkeitsmatrix zu

o= = ENGE) cosomy S mair i sy % st el ()
wobei y einen Proportionalitiitsfaktor und g den Verschiebungs-
vektor zufolge ciner Referenzlast p darstellt. Die gesuchte Grofie
# = 7y wird durch Nullstellensuche des aus Gleichung (10) hervor-
gechenden charakteristischen Polynoms bestimmt,

3. Beschreibung der geometrischen Form des Ubergangsstiickes
Die Erzeugende des Ubergangsstiickes wird durch ein sogenanntes
hyperoskulatorisches Polynom — im folgenden mit HP abgekiirzt
— beschrieben.
Das erwihnte Polynom 1aBt sich formal wie folgt anschreiben:
xly) =HBYx + B 2, + B xp + Ha xf . . . . (12)
Die Koeffizienten x, und x, bedeuten die Koordinaten der Punkte
1 und 2 (Bild 1); x, und xi stellen die erste bzw. zweite Ableitung
im Punkt 2 dar. Die Ausdriicke HEzs] symbolisieren Polynome, deren
r-te Ableitung im Knotenpunkt s (s = 1 v 2) gleich 1 ist. Die Funk-
tionswerte der Polynome sowie die ersten und zweiten Ableitungen

(mit Ausnahme der zuvor erwiihnten Ableitung) verschwinden in
beiden Knotenpunkten. Die besagten Polynome ergeben sich zu [12]

HY) = 1 (@®—10a2y* + 15ay* —65%) . . . . (13])
e

H},“;’_—%( +10a%y' —15ay* +65°) . . . . (139
a

H{) = i;( —. 4Pt Tay —34) . ... 138
a

HY = 223"{ + ety — Zaytd 5f) e oi134)

wobei a = y, — y; ist.

Das HP gewiihrleistet einen stetigen Ubergang der Kriimmungen
der Erzeugenden an den Anschliissen des Ubergangsstiickes an den
Zylinder oder an die Kugelkalotte. Flichengeometrische Kenn-
grifien wie Lamésche Parameter, Kriimmungsradien sowie deren
Ableitungen, die fiir die numerische Untersuchung benétigt werden,
konnen nun unschwer berechnet werden.

4, Numerische Untersuchungen

41 Deformationsproblem

Aus einer Reihe von untersuchten Modellen werden drei typische
Modelle herausgegriffen. Sie werden mit D1, D2 und D3 bezeich-
net. Die Ergebnisse werden mit den in [1] angegebenen Resultaten
fiir ein torusfarmiges Ubergangsstiick verglichen. Bild 3 enthilt eine
Prinzipskizze eines derartigen Modells. Die strichlierte Kurve stellt
die Erzeugende des torusformigen Ubergangsstiickes dar. Die Ab-
bildung vermittelt ferner einen Uberblidk iiber den Kriimmungs-
verlauf in der Erzeugendenrichtung. In Tafel 1 sind die maB-
gebenden Abmessungen und Werkstoffkennwerte zusammengefafit.
Fiir die in Bild 3 und Tafel 1 anfscheinenden Abkiirzungen gilt in
alphabetischer Reihenfolge:

ap axiale Abmessung eines Ubergangsstiidkes, bei welchem
die Erzeugende durch ein HP beschrieben wird
ap axiale Abmessung eines torusformigen Ubergangsstiidkes
E Elastizititsmodul
H, Hohe eines Kesselbodens, hei welchem die Erzeugende
des Ubergangsstiickes durch ein HP beschrieben wird
Hp Héhe eines Kesselbodens mit torusformigem Ubergangs-
stirck
k Kriimmung der Erzeugenden
Kt Kriimmungsextrem der Erzeugenden des Ubergangsstiickes
yimml
e
[ -0004 =-1/Ky
Z X,
= :?—2 at 1
(f’, \ ;5‘- ' \ Kext
I . /i
7 X5k, l '_i 0066=-1/R;
|

| k tmm')
Lédngenmafistob 1: 25

Krdmmungsmaistab Tcm 2 0025mm -

Bild 3. Prinzipskizze eines Modells aus der Serie D1, D2 und D3
(Kriimmungsmallstab richtigerweise: 1 em 2= 0,25 mm~1)
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Tafel 1. Abmessungen und Werkstoffkennwerte der Kesselbden D1, D2 und D3

ap Hp kaxt 2 ;'3 ,; ag Hp Ry Ry |Bz==x t o ;'l' E B
[mm] [mm] [mm~"] [mm] [0] [mm™] [mm] | [mm] [mm] [mm] [mm] [mm] 0] [mm™] [kN/m?] [0]
Dl | 13,5 =ap | 43,0=Hyp | —0,160 118,9 —1,888 | —0,038 4 N 1 4 J
D2 28,0 43,0=Hp =0,099 86,0 —2,778 —0,101 13,5 43,0 2540 15,2 1270 1.0 0,000 0,000 207 - 10° 0.3
D3 61,0 b —0,026 70,6 —3,455 —0,183 1~ 1- 'T’ 14 .1\ ,t + 1\ 1* ‘r
RK Radius der Kugc]kalottc Tafel 2. Randbedingungen fiir die Kesselbiden D1, D2 und D3
Ry Radius eines torusformigen Ubergangsstiickes Su | e ¥ av [ av | ol T
u =1 = 3 o )l [
Ry Radius des Zylinders da | 28 va | ad da | 08
£ Wandstiizks Kuotenpunkte in
%y, %y, a2y, x5, x4  Funktionswert, erste und zweite Ableitung  den Elementsecken
im Punkt 1 und 2 (mit Ausnahme der
Punkte 1, 3, 245) 1 3 1 0 1 0 0 1 0
@ Querdehnungszahl
Umfangslagerung
Kesselboden D1 weist die gleiche Hihe wie der Kesselboden mit  des aylindrisdien
torusformigem Ubergangsstiick auf. Es gilt also Hp = Hyp. Bei die- 5‘3“;;’ (Punkte 1 ; ; g ; g 5 3 5 "
. - . un Er
sem Kesselboden ist iiberdies die axiale Abmessung des Ubergangs-
stiickes gleich derjenigen beim torusformigen Ubergangsstiick, das r"l'l “'{’1‘; K‘]‘f*’g; : g i 3 " : " 3 i
- . un £
heiBt ap = ap. Beim Kesselboden D2 ist zwar auch Hp = Hp, T
1 T / T )
jedoch riickt bei diesem Kesselboden das kalottenseitige Ende des Eltr:umssuhwe:. J . z
. . T . - . . t P At — g2 T —
Ubergangsstiickes im Vergleich zum torusférmigen Ubergangsstiide  """"'°

in Richtung Pol der Kalotte. Es gilt somit ap > ap. Der Kessel-
boden D3 schlicBlich weist eine griliere Hihe als der Kesselboden
mit torusformigem Ubergangsstiick auf. Dariiber hinaus ist auch die
Entwicklungshihe des Ubergangsstiickes griBer als die des torus-
formigen Ubergangsstiickes. Es gilt folglich Hp > Hp und ap >ap.

In Anlehnung an [1] betrigt der fiir die Ermittlung der Verschic-
bungen zugrunde gelegte Innendruck p = 172,5 kN/m?, Um auch die
Schnittkrifte mit den in [1] angegebenen Resultaten fiir das torus-
formige Ubergangsstiide bequem vergleichen zu knnen, wurde fiir
die Berechnung der Schnittkrifte p = 703,8 kN/m® gewihlt.

Da sowohl Rotationssymmetrie der Anordnung als auch der Be-
lastung vorliegt, geniigt es, jeweils einen Sektor der zu untersuchen-
den Kesselboden zu betrachten. Bild 4 zeigt einen in einzelne ge-
kriimmte, dreiecksformige Finite Elemente zerlegten Sektor eines
Kesselbodens. Der Offnungswinkel des Sektors wurde willkiirlich
zu 15° gewiihlt. In der Abbildung sind die Knotenpunktsnummern
einiger markanter Knotenpunkte eingetragen. Im Bereich des
Ubergangsstiickes und im oberen Teil des Zylinders wurde das Netz
deshalb verfeinert, weil in diesem Bereich grolle Gradienten der
maBgebenden ZustandsgroBen zu erwarten sind. Die Abbildung ent-
hilt ferner das bereits erwithnte krummlinige, orthogonale Koordi-
natensystem «, 5. Die Randbedingungen fiic das vorliegende Pro-
blem sind in Tafel 2 zusammengestellt. Die Ziffern 0 und 1 bezeich-
nen aktive und unterdriickte Freiheitsgrade. Der Grund fiir die
Anordnung sogenannter Zwillingspunkte an den beiden Enden des
Ubergangsstiickes ist die Unstetigkeit der Kriimmungen im Falle

245
W Sektor der
Kugelkalotfe

187185 |
Sektor des |
Ubergangsstiickes
— Zylindersektor
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Bild 4. Tinite-Elemente Modell eines Sektors eines Kesselbodens
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des torusférmigen Ubergangsstiickes. Was Ubergangsstiicke anbe-
langt, deren Erzeugende durch ein HP heschrieben werden, so liegt
Stetigkeit der Kriimmungen an den beiden Enden des Ubergangs-
stiickes” vor. Folglich ist fiir die Zwillingspunkte (113, 116), (115,
118), (180, 183) und (182, 185) Kontinuitit in den aktiven Frei-
duv dw
B3,u,luncl-.(]l{),-
(114, 117) und (181, 184) betrifft, so sind entsprechende Lagrange-
sche Multiplikatoren gleichzusetzen. Mit anderen Worten: Bei Uber-
gangsstiicken der erwihnten Form sind Zwillingspunkte an sich
nicht erforderlich.

Die Bilder 5, 6 und 7 enthalten Vergleiche von Resultaten fiir die
KesselabschluBbiéden D1, D2 und D3 mit Ergebnissen fiir einen
KesselabschluBBboden mit torusformigem Ubergangsstiick. Verglichen
werden jeweils Transversalverschiebungen w ., Axialkrifte in Um-
fangsrichtung, N, , und Biegemomente in Erzeugendenrichtung, M; .
Alle erwihnten GroBen sind in den Bildern 5, 6 und 7 lings Er-
zeugenden der Behiilterboden aufgetragen.

Es zeigt sich, dall die Ergebnisse fiir den KesselabschluBboden D1
eindeutig ungiinstiger als die Vergleichswerte fiir den Kesselab-
schluBboden mit torusférmigem Ubergangsstiick sind. Der Grund
hierfiir liegt vor allem darin, dall der Betrag des Kriimmungs-
extrems der Erzeugenden des KesselabschluBbodens D1, |k | =
0,160 mm~!, hetriachtlich groBer als der Betrag der Kriimmung des
torusformigen Ubergangsstiickes ist, nimlich | & | = 0,066 mm™. Der
stetige Ubergang der Kriimmungen an den beiden Enden des
Ubergangsstiickes bewirkt offensichtlich keine Umkehr des Sach-

verhaltes.

heitsgraden v, zu fordern. Was die Zwillingspunkte

Der Trend beim KesselabschluBboden D2 ist im Vergleich zum
KesselabschluBboden D1 insofern giinstiger, als der Betrag des
Kriimmungsextrems bei ersterem, | k.| = 0,099 mm™, wesentlich
kleiner als der zuvor angegehene, analoge Wert heim Kesselab-
schlufiboden D1 ist. Nichtdestoweniger zeigt ein Vergleich der Er-
gebnisse fiir den KesselabschluBboden D2 mit den Resultaten fiir
den BehilterabschluBboden mit torusférmigem Ubergangsstiick, dal
letzterer trotz Unstetigkeit in den Kriimmungen an den beiden
Enden des Ubergangsstiickes und trotz geringerer Entwicklungshihe
des Ubergangsstiickes wegen des geringeren Absoluthetrages der
Kriimmung annihernd gleich giinstiz wie der Kesselabschluiboden
D2 ist.

Die Resultate fiir Kesselabschlufiboden D3 sprechen fiir sich. Auf-
grund des vergleichsweise sehr kleinen Absoluthetrages des Kriim-
mungsextrems, |fi(\x1 | = 0,026 mm™, kommt es zu einer ent-
scheidenden Reduzierung der Druckkraft in Umfangsrichtung se-
wie des Biegemomentes in Erzeugendenrichtung.

e




C. Unger / H. Mang

Zum Spannungs- und Stabilititsproblem von Kesselboden unter Innendruck

19w | |
72— —o— HP 01

& torusfirmiges
Ubergangsstock

m— & ﬁb(x

10—

- HPOT _
P

6 BN - .

—  Zylinder torusférmiges

Ubergangsstiick |

Kugelkaiotte

\
|
|
= 20 i 135 r B
i ‘1_@&-@% J

1

-2 af | Transversal-
|
5

verschiebungen w

|
|
|

1855 2150

Mee

l
|
200 - |
N/mm 5
y

=160 [—

-200
Axialkrafte
in Umfangsrichtung, N,

-300 |-

|
|
|
{
|
|

|
|
|
|

|
8155 2150
|

f

|

in Erzeugendenrichtung,
Mg

1655 2150

|
| |
| Biegemomente ‘
|
' |
| .

cl ¥/ ¥

Bild 5. Kesselboden D1 — Ergebnisvergleich mit Kesselboden mit torusfirmigem
Ubergangsstiick

42 Stabilititsproblem

Es werden Beuldriicke fiir fiinf Modelle von AbschluBbéden he-
rechnet. Die Modelle werden mit B1—B5 bezeichnet. Abmessungen
und Werkstoffkennwerte der Abschlufibéden werden so gewiihlt,

10w |
e T =B B sak
10 — & forusfirmiges

mm Ubergangsstiick i 4
8 [ HPOZ | |
M |‘ 280 4 II |
\—  Zylinder torusférmiges Kugelkalotte |
| 1 Ubergangsstiick | | 4__‘
- 720 Sl ' 295 ]
7}~ | | ] |
| |
‘r | |
I Irans versal - |
| verschiebungen w |
& | | |
5, 4

|
T ! 7855 i 2150
1 e lelss | | |
o | ¥ ‘ | |
W ‘ | I f
200 — ! [ ‘ |
Nemm | | |
i | | A
00 ) |
::—_a—a—(r‘% } ] X |
i | r | 1
| | | [
e |
A l |
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-300 |~ | o ‘ ’
0 E?,r2 al.c I" 1855 ] 2150
7 % | ‘:
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40 ‘ |
Nmm /mm J !
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o

|
Biegemomente

40 | »| in Erzeugendenrichtung, |
I RS e i ] |
a 6z 04 | 1855 2150
¢l %] F —*y-
Bild 6. Kessclboden D2 — Ergebnisvergleich mit Keszelboden mit torusférmigem
Ubergangsstiick

dal} die Ergebnisse mit dem in [1] angegebenen Resultat Fiir einen
BehiilterabschluBboden mit torusférmigem Ubergangsstiick ohne
Schwierigkeit verglichen werden konnen. Bild 8 enthilt eine Prin-
zipskizze eines derartigen Modells. Mit @ und b werden Tangenten-
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Tafel 3. Abmessungen und Werkstoffkennwerte der Kesselbiden B1—B5

% Hy kext *2 = xy w | Hp | Rg § fp RpEe) ) s | E “
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Bild 7. Kesselboden D3 — Ergebnisversudh mit Kesselboden mit torusfirmigem

Ubergangsstiick
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Vorbeulverhaltens und/oder plastischen Verhaltens, von sekundirer
Bedeutung. Dies gilt auch fiir den Einfluli der Verschiehungsabhiin-
gighkeit des Innendrucks anf die Verzweigungslast des Gleichgewich-
tes. In diesem Zusammenhang sei aufl eine Arbeit von Floegl und
Mang [13] verwiesen, in der unter andervem fiir einen hyperboli-
schen Kithlturm unter Windbeanspruchung gezeigt worden ist, dal}
die Verschichungsabhingigkeit der Windheanspruchung keinen Ein-
filull auf den Beuldruck hat. Da der Einfluli der Verschiebungsah-
abhiingigkeit einer Druckbeanspruchung im Regelfall mit zuneh-
mender Anzahl der Beulwellen abnimmt, spielt der erwiihnte Effekt
bhei Kesselboden unter Tnnendruck, die nach betrachtlich mehr
Wellen als Kithlturmschalen ausheulen, keine Rolle.
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Tafel 4. Randbedingungen fiir die Kesselbiden B1—B5
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Bild 9. Finite-Elemente Modell eines Scktors eines Kessclbodens

Tafel 5 enthilt bezogene Beuldriicke pf:lfpﬁp} fiir die Kesselhiiden

B1—B5. Mit Pﬁj und piﬂrP) werden der Beuldrudk fiir den Kessel-
boden mit torusformigem Ubergangsstiick bzw. mit einem Uber-
gangsstiick, dessen Erzeugende durch ein HP beschrieben wird, be-
zeichnet. Die Ergebnisse stellen eine logische Kongsequenz der aus
der Losung des Spannungsproblems gewonnenen Erkenntnisse dar.
Der Beuldruck nimmt mit zunehmendem Betrag des Kriimmungs-
extrems der Erzeugenden ab. Die Abnahme des Beuldruckes liBt
sich aber zum Teil durch Anordnung von Ubergangsstiicken mit
stetigen Ubergingen der Kriimmungen an ihren Enden riickgingig
machen.

Tafel 5. Bezogene Beuldriicke

B1 ‘ B2 B3 | B4 Bs

{7) | ,(HP) 1/0,53 | 1/0,53

Pl [Py, 141,19 ’ 111,31 12,41

5. SchluBfolgerungen

Die aus der vorliegenden Arbeit gezogenen SchluBfolgerungen las-
sen sich wie folgt zusammenfassen:

1. Fiir das Ausmall an Druckspannungen im Ubergangsstiick von
Kesselboden und in weiterer Folge fiir die Beulsicherheit der-
artiger Kesselabschliisse ist es nicht unwesentlich, ob an den
beiden Enden der Ubergangsstiicke Unstetigkeiten in den Kriim-
mungen der Erzeugenden auftreten oder nicht.

2. Die Beulsicherheit nimmt mit abnehmendem Betrag des Kriim-
mungsextrems der Erzeugenden zu.

3. Ubergangsstiicke, deren Erzeugende durch ein hyperoskulatori-
sches Polynom (HP) beschrieben werden, henotigen zur Klein-
haltung des Betrages der Kriimmung der Erzeugenden eine ge-
wisse Entwidklungshshe a; des Ubergangsstiickes. Nun kann
aber, wie numerische Untersuchungen gezeigt haben, ap nicht
beliebig gewihlt werden. Optimale Verhiiltnisse ergeben sich
fir a:b=1:13, wobei a und b Tangentenabschnitte an die
Erzeugende sind (5. Bild 8). Bei einer Verlingerung des Uber-
gangsstiickes in den Bereich des Zylinders beginnt die durch
das HP heschriehene Erzeugende zu oszillieren. Andererseits
ergibt sich bei einer Verlingerung des Ubergangsstiickes in den
Bereich der Kugelkalotte nur eine unwesentliche Verkleinerung
des Betrages des Kriimmungsextrems.

4. Die Lage der Erzeugenden, die durch ein HP beschrieben wird,
weicht, wie Bild 8 zeigt, relativ wenig von der Lage der Erzeu-
genden eines torusformigen Ubergangsstiickes ab. Die Form
des AbschluBbodens wird bei Verwendung eines HOPoid-Uber-
gangsstiickes anstatt eines torusformigen Ubergangsstiickes nur
geringfiigig geiindert. HOPoid-Ubergangsstiicke bewirken bhei
ausreichender Entwicklungshihe eine betrichtliche Erhohung
des Beuldrucks.

Die Autoren danken dem Fonds ., 150 Jahre Wiener Technische

Hodchschule® der Handelskammer Wien, der die vorliezende Arbeit

unterstiitzt hat.

Schrifttum

[1] Kanodia, V. L., Gallagher, R. H., und Mang, H. A.: Instability Analysis of
Torispherical Pressure Heads with Triangular Thin-Shell Finite Elements.
Transactions of the American Society of Medianical Engineers, Journal of
Pressure Vessel Tedinology 99 (1977), 5. 64—74.

[2] Fliigge, W.: Statik und Dynamik der Schalen. 3. Auflage, Berlin, Gittingen,
Heidelberg: Springer-Verlag, 1962,

[3] Galletly, G. D.: Torispherical Shells-A Caution to Designers. Transactions
of the American Society of Mechanical Engincers, Series B, Vol. 81, No. 1,
Feb. 1959, S. 51—63.

[4] Shield, R. T., und Drucker, D. C.: Design of Thin-Walled Torispherical and
Toriconical Pressure Vessel Heads. Transactions of the American Society
of Mechanical Enginecrs, Series E, Veol. B3, Juni 1961, S§. 292—297.

[5] Adachi, J., und Benicek, M.: Buckling of Torispherical Shells under Internal
Pressure. Experimental Mechanics, Aug, 1964, 5. 217—222.

[6] Bushnell, D., und Galletly, G. D.: Stress and Budkling of Internally Pressur-
ized, Elastic-Plastic Torispherieal Vessel Heads — Comparisons of Test and
Theory, Petroleum Mechanical Engineering and Pressure Vessels and Piping
Conference, Mexico City, Mexico, Sept. 1976, Paper No. 76-PVP-23, 5. 1—14
(Preprint).

[7] Bushnell, D.: Nonsymmetric Buckling of Internally Pressurized Ellipsoidal and

anispl’u‘rical Elastic-Plastic Pressure Vessel Heads, Petroleum Mecdhanical
Engincering and Pressure Vessels and Piping Conference, Mexico City,
Mexico, Sept. 1976, Paper No. 76-PYP.25, 5. 1—10 (Preprint).

[8] Mang, H. A., Gallagher, R. H., und Kanodia, V. L.: FESIA (Finite Element
Shell Tnstability Analysis). User’'s Manual, Department of Structural Engi.
neering, School of Civil and Environmental Engineering, Cornell University,
Ithaca, New York, Juni 1976.

[9] Mang, H. A., Gallagher, R. H., Cedolin, L., und Torzidky, P.: Deformation
und Stabilitit windbeanspruditer Kiillturmschalen, Ingenicurarchiv 47 (1978),
5. 391410,

[10] Koiter, W. T.: A Consistent First Approximation in the Theory of Thin
Elastic Shells. Proceedings of IUTAM Symposium on Theory of Thin Elastic
Shells, Amsterdam 1960,

[11] Mang, H. A.: Derivation of General Algebraic Constraint Conditions for
»Weak® C-Continuity for Thin Shells. Int, J. Num. Mecth, Engng. 11 (1977),
5. 1593—1604.

[12] Bogner, F. K., Fox, R. L., und Schmit, L. A., Jr.: The Generation of
Inter-Element-Compatible Stiffness and Mass Matrices by the Use of Inter-
polation Formulas. Proceedings of the First Conference on Matrix Methods
in Structural Medhanics, Wright-Patterson Air Force Base, Ohio, 1965,
5. 397—443. 2

[13] Floegl, H., und Mang, H.: Zum Einfluf der Verschiebungsabhingigkeit un-
gleichformigen hydrostatischen Drudkes auf das Ausbeulen diinner Schalen
allgemeiner Form. Ingenieurarchiv 50 (1981), S. 15—30.

Die Schriftleitung weist noch hin anf EBlinger, M.: Statische Berechnung von
Kesselbiden, 1952 Springer-Verlag, Berlin, Gottingen, Heidelberg, Darmstadter

Dissertation.

DER STAHLBAU 12/1980 379




